The Candida Expert

Posts tagged ‘Dr. Jeff McCombs’

Candida Linked To Arthritis, Multiple Sclerosis, Psoriasis, and Other Autoimmune Conditions

In this recent study, Candida albicans was shown to cause inflammatory and autoimmune reactions that lead to arthritis, psoriasis and other skin rashes, multiple sclerosis, and many other conditions and diseases – http://candidaplan.com/blog/620/candida-linked-to-arthritis-multiple-sclerosis-psoriasis-and-other-autoimmune-conditions/

VISIT OUR NEW BLOG AT – www.candidaplan.com/blog

Candida, Fruit, and Dr. McCombs Candida Plan

When I developed the McCombs Plan about 20 years ago, I was fortunate enough NOT to be familiar with the anti-candida programs or books that were around. That meant that I could discover for myself what worked and what didn’t work for my patients. Three years later, I started getting questions from my patients about why this or why not that.

The Plan as it had been developed was very successful from the beginning and is still the original Plan as it is laid out today. One of the common questions that I received was why – http://candidaplan.com/blog/432/candida-fruit-and-dr-mccombs-candida-plan/

Can You Eat Too Many Healthy Fruits and Veggies?

Is it possible to overeat healthy foods? I guess that would depend on the context. The point of the article below is that it is possible to consume too many calories and gain weight, regardless of whether the food is healthy or not. Contrary to this type of logic however, when doing Dr. McCombs Candida Plan – http://candidaplan.com/, we find that eating plenty actually helps to increase weight loss. This is due to the fact that detoxifying the body takes lots of energy and you need to fuel this process. Many people comment that they “haven’t eaten this much in years and they’re still losing weight,” which brings us back to context. Here’s the short article anyway – http://www.sciencedaily.com/releases/2012/07/120724144423.htm

It may make you scratch your head, but in fact it is possible to overeat healthy foods, according to Loyola University Health System registered dietitian Brooke Schantz.

“While fruits are nutritious, too much of even a healthy food can lead to weight gain,” Schantz said. “The key is to remember to control the portion sizes of the foods you consume.”

Schantz reported that overeating healthy foods is easy to do, but the same rules apply to healthy food as junk food. Weight fluctuates based on a basic concept — energy in versus energy out. If your total caloric intake is higher than the energy you burn off in a day, you will gain weight. If it is lower, you will lose weight.

“I have had many patients tell me that they don’t know why they are not losing weight,” Schantz said. “Then they report that they eat fruit all day long. They are almost always shocked when I advise them to watch the quantity of food they eat even if it is healthy.”

Schantz said that one exception applies. Nonstarchy vegetables are difficult to overeat unless they are accompanied by unnecessary calories from sauces, cheeses and butter. This is due to the high water and fiber content of these vegetables coupled with the stretching capacity of the stomach. The vegetables she suggested limiting are those that are high in starch, such as peas, corn and potatoes. Foods that are labeled as fat-free or low-fat are another area of concern.

“People tend to give themselves the freedom to overeat ‘healthy’ foods,” Schantz said. “While the label might say that a food or beverage is low-fat or fat-free, watch the quantity you consume and refrain from eating an excessive amount. Foods that carry these health claims may be high in sugar and calories.”

Context, context, context!

Does Candida Know When To Attack

There is always a wealth of information coming forth that helps to provide greater clarity on how candida becomes problematic in the body. This recent study, as reported in Science Daily, provides some good information and some confusing information. I’ll add some editorial throughout the article – http://www.sciencedaily.com/releases/2012/07/120724153651.htm

The opportunistic fungal pathogen Candida albicans inconspicuously lives in our bodies until it senses that we are weak when it quickly adapts to go on the offensive. The fungus, known for causing yeast and other minor infections, also causes a sometimes-fatal infection known as candidemia in immunocompromised patients An in vivo study, published in mBio, demonstrates how C. albicanscan distinguish between a healthy and an unhealthy host and alter its physiology to attack. [There are several factors that cause the conversion of the normal yeast form of candida to its pathogenic, problematic fungal form – pH, temperature, antibiotics, bacterial cell wall components, etc., The phrase, “senses we are weak” isn’t something that I have ever seen in scientific studies, but it may be another way to state immunsuppression. Even so, I have yet to see that listed as a trigger for yeast-to-fungal conversion. Immunosuppression can play a role in the spread of candida, but some studies indicate that it isn’t a pre-requisite for this to happen. Candidemia is another term for fungal sepsis, or blood-borne fungal infection. Sepsis is one of the top 10 or 11 leading causes of death in the United States, depending on year of reference, and fungal candida causes over 50% of that].

“The ability of the fungus to sense the immune status of its host may be key to its ability to colonize harmlessly in some people but become a deadly pathogen in others,” said Jessica V. Pierce, BA, PhD student in the molecular microbiology program at the Sackler School of Graduate Biomedical Sciences at Tufts. [This is an interesting quote from an author in the study. It can be taken a couple of different ways. It might be interpreted that she is stating that it spreads throughout the body in its fungal form in the presence of an intact immune system, but doesn’t create any imbalances. That would be ignoring a lot of other research that demonstrates how the fungal form of candida creates many imbalances within the body. It has been shown to spread through the body without the immune system being compromised. A second interpretation and the one that I believe she is stating is that as a fungus, it colonizes the digestive tract harmlessly or pathogenically depending on the host immune status. That would ignore the fact that candida colonizes the intestinal tract in its yeast form. It may not be much of a differentiation, but it can be misleading as the fungal form is problematic and the yeast form isn’t.]

“Effective detection and treatment of disease in immunocompromised patients could potentially work by targeting the levels of a protein, Efg1p, that we found influenced the growth of Candida albicans inside the host,” she continued. [As stated before, there are several factors that cause the conversion of yeast-to-fungus. Efg1 has been identified previously as part of the internal mechanism that regulates the yeast-to-hyphal conversion and back again. It’s not the only part and its presence may not be a good indicator of fungal infections, as it can exist in the yeast form also.]

The researchers knew from previous research that Efg1p influences the expression of genes that regulate how harmful a fungal cell can become. Surprisingly, the investigators found that lower Efg1p levels allow the fungal cells to grow to high levels inside a host. Higher levels of the protein result in less growth. [Would the high levels be associated with it’s yeast form and the low levels with its fungal form. That can be a good reason for differentiating between yeast and fungus and not referring to both forms as though they were fungal.]

To examine how the immune status could affect the growth of C. albicans within a host, the researchers fed both healthy and immunocompromised mice equal amounts of two fungal strains containing two different levels of the Efg1p protein.

Fecal pellets from the mice were tested to determine which strain of fungi thrived. In a healthy host, the fungal cells with higher levels of the protein predominated.

In immunocompromised mice, the fungal cells with lower levels of the protein flourished. The researchers noted that lack of interactions with immune cells in the intestinal tract most likely caused the necessary environmental conditions favoring fungal cells that express lower levels of the protein, resulting in fungal overgrowth and setting the stage for systemic infection.

“By having a mixed population with some high Efg1p cells and some low Efg1p cells, the fungus can adjust its physiology to remain benign or become harmful when it colonizes hosts with varying immune statuses. These findings are important because they provide the first steps toward developing more effective methods for detecting and treating serious and stubborn infections caused by Candida albicans, such as candidemia,” said Carol A. Kumamoto, PhD, professor of molecular biology and microbiology at Tufts University School of Medicine and member of the molecular microbiology and genetics program faculties at the Sackler School of Graduate Biomedical Sciences.

The immune system and “good bacteria” within the body act to regulate the size of C. albicans fungal populations in healthy individuals. When the immune system is compromised, the fungus can spread throughout the body. Candidemia, i.e. blood-borne Candida, is the fourth most common blood infection among hospitalized patients in the United States and is found in immunocompromised patients such as babies, those with catheters, and the critically ill. [Here we see the authors state that it is the immune system and the “good bacteria” that help to regulate the candida populations. This would be a very strong statement against the use of antibiotics, as antibiotics destroy the “good bacteria” and suppress the immune system. With Sepsis being one of the top causes of death in the United States and over 50% of that being due to fungal candida, much of that can be prevented by not using antibiotics. That would eliminate sepsis as a leading cause of death and fungal candida as the 4th leading cause of hospital infections. Throughout this article I didn’t see any differentiation between the yeast and fungal forms of candida and I didn’t find it mentioned in the original abstract either. Many studies seem to be limited in the breadth of understanding of candida and the vast amount of past research. Through other studies, it has already been established that immunosuppression is not necessary for the spread of candida. For more research on this, view the Candida Facts Sheet article.  Tests can only serve as indicators, not absolute measures of function in the body. Targeting something like Efg1 doesn’t seem to be a promising advancement in the understanding or treatment of candida. If the purpose is to create another target for antifungal medications, it must be remembered that all medications contain far more harmful effects than beneficial effects. One common effect of antifungal medications  is immunosuppression.

A Time For Transformation: A Short Film By The McCombs Center For Health

We’re proud to announce our new short film, A Time For Transformation.

Watch the short 2-minute trailer here:

Visit our website to enjoy the full-length video (about 33 minutes):

http://ATimeForTransformation.com

“A Time for Transformation” was born out of our desire to share who we are and why we do what we do. We believe health is inherent in all of us, and that health and hope go hand-in-hand.

There are many pathways to health and living a life of infinite possibility. Our hope is that this film encourages you to take your first step, or shines some light on the path you’ve already chosen.

Whatever step you choose, we support you and wish you the very best in health.

– The McCombs Center for Health Family

Candida and Inflammation in the Athlete

There’s a certain sense of loss in realizing that the best of each us is being eroded away, or lies wasting away, as hidden potential within the cells of our bodies. The gradual erosion of potential is often found in cases where there is an underlying imbalance in the body that creates chronic inflammation and the inability to absorb nutrients for normal function and repair. When chronic inflammation and nutritional imbalances are combined, degeneration of tissues advances at a far faster rate than it normally would. I have found this to repeatedly be the case in people who have been exposed to antibiotics and as a result suffer from the system-wide imbalances that are created from their usage.

In many people, this may look like a normal aging process. In the athlete, it usually is associated with excessive wear and tear on joints and failure of the muscles and the body to respond and perform as they once did. Athletic careers and pursuits can end prematurely, and the hopes and dreams of what could have been, remain forever as hopes and dreams.

Under these types of constant inflammatory conditions, the serious athlete or weekend warrior who pushes the limits of his body’s ability in pursuit of personal records and goals, will end up driving the inflammatory machinery that will eventually rob them of their potential for excellence. Exercise produces pro-inflammatory immune system responses and oxidative stress that play a role in repair and remodeling of muscle tissues. Intense exercise carries this response further, and over the long-run can produce immune system suppression and autoimmune-type responses. The following excerpt from Journal of the International Society of Sports Nutrition helps to explain a little more on this topic:

“DOMS (Delayed Onset Muscle Soreness) typically occurs after unaccustomed or high-intensity exercise, most commonly anaerobic. Soreness is usually noted at 24 hours post-exercise and can last as long as 5 to 7 days post-exercise. Although several models of DOMS have been suggested, researchers generally agree that muscle damage initiates a cascade of events leading to DOMS. The muscle damage and oxidative stress response following anaerobic exercise have been deemed necessary to promote skeletal muscle remodeling to gain benefit from the exercise, but enhanced recovery may be advantageous for more rapidly promoting an anabolic environment.

Exercise elicits mechanical and hormonal reactions from the body. The resulting muscle damage from these reactions elicits inflammatory and oxidative responses that may exacerbate muscle injury and prolong the time to regeneration. The hormonal contributor to muscle damage during exercise is derived through basic neuroendocrine responses to exercise demands. High intensity exercise triggers the activation of the hypothalamic-pituitary-adrenal (HPA) axis leading to the release of cortisol and other catabolic hormones. These hormones function to meet increased energy needs by recruiting substrates for gluconeogenesis via the breakdown of lipids and proteins. Through their catabolic nature, these hormones also indirectly lead to muscle cell damage.

Inflammation following anaerobic exercise functions to clear debris in preparation for muscle regeneration. The magnitude of the increase in inflammatory cytokines (such as IL-6) varies proportionately to the intensity and duration of the exercise. However, a prolonged inflammatory response can increase muscle damage and delay recovery by exacerbating oxidative stress and increasing production of reactive oxygen species (ROS). The increased ROS production seen with high intensity training can lead to oxidative stress such as lipid peroxidation (1).”

While intense exercise is usually associated with greater degrees of DOMS, inflammation, immune system suppression, and oxidative stress, mild-to-moderate exercise is typically associated with boosting the immune system and supporting greater health in the body. If however, there is an underlying state of chronic inflammation due to an infectious agent, then even mild-to-moderate exercise may result in many of the symptoms commonly found with intense exercise, as fuel is added to an already burning fire. Over a period of months and years, this can lead to shortened productivity and limited excellence in today’s athletes. In one sense, it is the equivalent of driving with the brakes on.

The most frequent infectious agent that fits this model is Candida albicans. C. albicans commonly exists as a yeast organism in the human body and is considered a normal part of healthy tissue flora. Due primarily to the effect of antibiotics, this yeast organism transforms into a pathogenic, problematic fungal form that has been associated with a multitude of conditions and diseases in the body.

Since the introduction of antibiotics in the late 1940s following WWII, there has been a remarkable increase in the research of candida-related conditions and diseases (2) with over 24,000 research articles being published since 1949. On average, that is enough for one research article per day in the last 51 years, with enough left over to fill another 6 years of daily research publications. With a one-to-one association between antibiotic use and the development of systemic fungal infections, implications exist for society as whole being afflicted with a post-antibiotic syndrome of fungal candida and immune system dysregulation.

In systemic fungal candida infections, ongoing pro-inflammatory reactions from both systemic and localized immune system responses combine with the virulence mechanisms of fungal candida to create a constant state of oxidative stress, pro-inflammatory hormonal imbalances, chronic tissue inflammation, and tissue degeneration. This type of smoldering, nonresolving inflammation becomes a constant component of the microenvironment within and is implicated in many diseases and conditions.

Joint restriction, pain, swelling and inflammation, weight gain, fatigue, blood sugar imbalances, nutrient deficiencies, slower post-exercise recovery periods and other symptoms are commonly associated with this underlying condition in today’s athletes and others.

In response to patients who had these problems, I developed a well laid out plan to counteract this post-antibiotic syndrome and subsequent systemic imbalances. Athletes who have followed the McCombs Plan have seen a decrease in the degree and amount of inflammation experienced during exercise, as well as pre- and post-exercise inflammatory responses with faster recovery times. Many of the conditions associated with fungal candida that impact human performance have been diminished and resolved. Marathon runners and Tri-atheletes found themselves competing without “hitting the wall.” Wrestlers, weight lifters and others found that their joint pains and restrictions decreased and disappeared. Increased energy and vitality that is sustained throughout the day has been a common response.

If we are to achieve the best that we can be, we must rid ourselves of these types of physiological limitations, or settle for less and be happy with what could have been.

1. The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study

Shawn M Arent, Meghan Senso, Devon L Golem and Kenneth H McKeever

Journal of the International Society of Sports Nutrition 2010, 7:11doi:10.1186/1550-2783-7-11

http://www.jissn.com/content/7/1/11

2. SciTrends of Biomedical Sciences

http://rzhetskylab.cu-genome.org/cgi-bin/trendshow?MeSHID=1191

Antibiotics and Candida

I often get asked about antibiotics and systemic candida. Antibiotics are definitely the best way to create systemic fungal infections and lifelong intestinal flora imbalances in the body, as well as an unlimited number of other problems. Although the medical profession doesn’t even acknowledge this, scientists and researchers state this obvious fact over and over again.

 

Antibiotics kill good and bad bacteria. Killing these bacteria causes a massive hemorrhaging of the internal components of all bacteria. This is particularly problematic because our bodies respond to these internal components by producing acute and eventually chronic long-term inflammation that can affect all tissues and cells throughout the body. This massive inflammatory cascade can breakdown tissues and interfere with cellular function. One of these internal substances, Lipopolysaccaharide (LPS) is common in gram-negative bacteria and is a substance that most researchers use in laboratory testing due to the overwhelming reliable strong immune response that it causes.

 

Some of these intracellular bacterial components, like Peptidoglycans (PGN) also act directly on the cellular membrane of the yeast Candida Albicans causing it to transform into its pathogenic fungal form. This is in addition to antibiotics eliminating millions of beneficial bacteria that help to keep the Candida Albicans yeast within ratios that benefit the overall health of the intestinal tract and therefore the rest of the body.

 

Antibiotics can also suppress the immune system response. This primarily affects the macrophages which go around cleaning up pathogenic organisms that would otherwise harm us. By suppressing macrophages, antibiotics can reduce the pro-inflammatory cascade which macrophages play a big role in initiating. While this may seem beneficial, it actually aids in the spread of the pathogenic fungal form of C. Albicans. First, with antibiotic-induced suppression of the immune system, the fungal candida now can spread more rapidly without macrophages to inhibit it. Secondly, by suppressing the macrophages and the inflammatory response, the liver does not release positive acute-phase proteins which are necessary for preventing the spread of pathogenic organisms throughout the body. Three of these acute-phase proteins (Ferritin, Ceruloplasmin, & Haptoglobin) function by binding iron and making it unavailable to pathogenic fungal candida. Without these 3 proteins, fungal candida can now attach itself to our blood cells and feed on an unlimited source of iron in the form of hemoglobin to help it spread throughout the body. This also goes for other pathogenic microbes that will be spreading as a result of the effect of antibiotics in the body. 

 

By killing off the beneficial bacteria that inhabit and help to regulate the normal healthy intestinal flora, we lose the beneficial enzymes and acids that these organisms produce. This causes the pH of the intestinal tract to become more alkaline. An alkaline intestinal pH also promotes the conversion of C. Albicans into its pathogenic fungal form. When the intestinal pH is acidic, candida remains in its normal yeast form. 

 

The above examples are just some of the ways that antibiotics promote and maintain the ongoing growth and spread of fungal candida throughout the body.

 

Killing off the beneficial bacteria also leads to decreased absorption of nutrients that our cells and tissues need to function in a healthy state. Certain strains of acidophilus help to synthesize B vitamins. A deficiency of these alone would create innumerable problems within the body.

 

There are an estimated 100 trillion micro-organisms within the intestinal tract. For many years, researchers were able to identify some 300-500 species of micro-organisms that were responsible for making up the 100 trillion cells. Recent advances in the use of technology have now identified close to 6,000 species in the large intestine alone. Most of what these organisms do and how they interact is unknown. As long as there is a sufficient amount of beneficial bacteria to keep everything in balance, then we have a better chance at staying healthy. Research now tells us that some these species are permanently eliminated from the body by the use of antibiotics – http://www.sciencedaily.com/releases/2008/11/081118121941.htm.

 

Apart from the use of antibiotics being responsible for thousands of deaths and over 144,000 visits to emergency rooms each year in the U.S. alone, the incidence of antibiotic resistance continues to escalate worldwide to the point that we are rapidly approaching a new era where antibiotics won’t be useful for most people – http://www.sciencedaily.com/releases/2009/01/090128183925.htm.

As this continues to happen, we will see an increase in the use of natural methods that help restore balance without creating additional problems. This is the goal of the McCombs Plan for Health, Vitality, and Transformation – http://mccombsplan.com/.

A “S.A.D.” Lifestyle

As our country deals with the effects of past deregulation and the current financial crisis, I am struck by how America has also become deregulated in the area of its dietary choices and the resultant health crisis that is developing as a result. Sound dietary practices have been dismantled and replaced by eating whenever, whatever, and however it suits us in the moment. Common sense management of our food choices has been neglected in favor of fad diet fixes and Flintstone vitamins.

The wisdom of the body as a temple that needs to be cherished and cared for has been replaced by the philosophy of the body as an amusement park and I’ve got a season pass.

It’s no mistake that the acronym for the Standard American Diet is S.A.D. When America exports the dietary principles of S.A.D. to another country, a decline in the health of its people quickly follows. It also holds true for foreigners who immigrate here, as they quickly find out that their health declines and their weight increases when eating as the natives do. In all fairness, America should have signs at its entry borders that warn of the risks that go with adopting our S.A.D. lifestyle.

Using the government’s Body Mass Index (BMI) standard, a calculation based on height and weight, over 66% of Americans are overweight and 34% are obese. If current trends continue, by 2015, it’s estimated that 75% of American adults will be overweight or obese. By 2030, that estimate increases to more than 86 percent of adults, and by 2048, well let’s just say that finding a normal weight person will be like finding a needle in a haystack. The BMI standard isn’t without just criticism, as other body measurements are not considered. When considering the overall trend, however, it’s obvious that Americans are getting fatter and the associated illnesses and healthcare costs that accompany this trend are also on the rise.

Being overweight increases our risk of diabetes, high blood pressure, heart disease, stroke, cancer, liver and gall bladder disease, osteoarthritis, infertility, and various other related diseases and conditions. All of these are signs of lifestyle mismanagement, not medication deficiencies.

I imagine that a pharmaceutical company’s Board of Directors looks upon America’s sedentary lifestyle and standard diet much in the same way that a cannibal looks upon a newly caught fat missionary prior to feasting. Our gains become their gains.

The pharmaceutical industry continues to propagate the philosophy of there’s nothing wrong with us. It’s not our fault. It’s just genetics, hormones, and other uncontrollable dysfunctions in our bodies that they will soon have a drug for. So, don’t worry, keep eating. For heaven’s sake, there’s no need to deprive your self of anything. Eat! You’ve earned it. Eat! You deserve it. Eat! It’s the holidays. Eat, eat, eat!

President-Elect Barack Obama keeps reminding us that we need to prepare ourselves for making sacrifices in order to correct the excesses of the past. This applies as much to our diet and lifestyle choices as much as it does to the economy. If sacrifices are to be made, then we can choose to sacrifice stupidity for wisdom. We can live up to our potential and leave behind the excuses and reasons for not taking care of ourselves.

Over half of Americans lead a sedentary lifestyle. The current government recommendation calls for 30 minutes of exercise 5 days a week. I have always thought that the government usually gets it half-right. Exercising 60 minutes 5 days a week is probably even better. Start where you are and go from there. Leave the “have to do it/be it/have it now” attitude behind. Evolve your desires to allow for gradual progress to have its impact.

In his book “What May Be” Piero Ferrucci states, “You must not follow your feelings. Your feelings must follow you.” We must begin to exhibit an emotional intelligence that directs our food choices. We must eat with a conscious awareness of how we wish to transform our bodies, for our bodies are transforming from moment-to-moment whether we like it or not. How it transforms can be up to us.

So as Thanksgiving approaches, I believe that it’s time to be thankful for the abundance and opportunities that we have as Americans. It’s time to invest in ourselves and our future. We can create something remarkable with our lives and share our life stories with others. We can be a nation of everyday heroes, ordinary people living extra-ordinary lives.

As an old adage states, “If not now, when? If not me, who?”

Dr. Jeffrey S. McCombs is a 3rd generation Doctor of Chiropractic, author of the book “LifeForce,” and developer of the McCombs Plan. His 25 years of ongoing research and practice emphasizes addressing the nutritional, biochemical, structural, emotional, and environmental aspects of acute and chronic health conditions in his patients.

He can be reached at www.mccombsplan.com or 888-236-7780.

The Candida Challenge

Currently, there are over 100,000 species of known fungus on the planet and another 1.5-2.5 million that are expected to exist. Of these, the most well known fungus that exists on and within humans is the Candida Albicans species. Of this particular species there are over 1000 different strains that have been identified in various studies.

Candida Albicans, is normally a benign member of the normal flora of the human digestive tract, but it is capable of causing life-threatening illnesses in patients whose immune system is compromised. It is a dimorphic organism, meaning that it exists in 2 different forms, as a yeast or a fungus.

The yeast form is considered to be the benign or harmless state, while the fungal, mycelial form is the harmful, invasive state. Some research suggests that the yeast form may also be harmful under certain conditions, or at least play a greater role in the ability of the fungal form to invade the body and avoid immune system responses. The form that Candida will assume is dependent on various environmental factors – temperature, pH, nutrient availability, immune response, micro-organism competition, etc. It continually demonstrates an amazing ability to adapt to changes in its environment at lightening-like speeds.

Candida albicans is the most frequent opportunistic fungal infection in man. In hospital stays, it is the most commonly acquired (nosocomial) infection due to antibiotic use.

Antibiotics have a growth inducing effect on Candida Albicans. This can be accomplished in several ways. Antibiotics destroy the natural bacterial flora that helps to keep candida in check. Some resources state that the normal ratio of good bacteria to candida is a million to one. Eliminating large bacterial colonies eliminates the competition and enables the candida to have a bigger share of the pie, so to speak.

As bacteria are destroyed by antibiotics, they break down and release substances from within their cells that promote inflammation and tissue break down. One of these inflammatory substances, peptidoglycan (PGN) has been found to directly stimulate candida to change from its yeast to fungal form.

Antibiotics can also suppress immune system responses and function, which enable the fungal candida to evade immune cells and grow unchecked throughout the body.

When antibiotics indiscriminately destroy the good and bad bacteria of the intestinal tract, they affect the normal pH of these tissues. The bacteria help to keep the pH of the intestinal tract in an acidic range through secretions of acids and enzymes. Without these acids, the pH becomes more alkaline. This creates an environment that further stimulates and promotes active fungal growth.

As expressed earlier in this article, candida displays amazing adaptability to its environment. One common misconception is that candida grows only in a nutrient rich environment. Research shows that a deficiency of nutrients can also stimulate the yeast-to-fungal change, as the candida will go in search of nutrients elsewhere in the body’s tissues. The fact that candida grows on the nutrient barren plains of our body’s skin surface is a good example of how well it can survive under different conditions.

Once the fungal form of candida has been allowed to flourish, it can affect every organ, tissue, and cell of our bodies. Candida excretes a long list of toxins into the body. These toxins can produce many symptoms and lead to the overall deterioration of health that is a hallmark of candida infections. When our immune systems are depleted, stressed, or imbalanced in any way, this will allow the candida to become a systemic infection. This type of infection can last an entire lifetime, causing rapid aging and a host of illnesses.

To restore health and vitality in the body, the candida needs to be eliminated and reduced to its yeast form once again. Additionally, the body needs to detoxified of the accumulated wastes, and the beneficial bacterial flora needs to be re-implanted into the body’s tissues. The intestinal tract is considered to be the densest ecosystem of bacteria on the planet. There are an estimated 100 trillion cells that reside within it. Restoring and maintaining the balance of this system will have a tremendous impact on our health and how we age. We have enough information to enable us to activate the life force within us and make the right choices for leading a healthy vibrant life.

Dr. Jeffrey S. McCombs, DC, is a 3rd generation Doctor of Chiropractic, author of the book: LifeForce, and developer of the Life Force Plan. His 25 years of ongoing research and practice emphasizes addressing the nutritional, environmental, emotional, structural, and biochemical aspects of acute and chronic health conditions in his patients.

He can be contacted at www.mccombsplan.com, 888.236.7780.

 

 

A quick look at the genus Candida on Wikipedia lists 44 species of Candida: Candida albicans, Candida ascalaphidarum, Candida amphixiae, Candida antarctica, Candida atlantica, Candida atmosphaerica, Candida blattae, Candida carpophila, Candida cerambycidarum, Candida chauliodes, Candida corydali, Candida dosseyi, Candida dubliniensis, Candida ergatensis, Candida fructus, Candida glabrata, Candida fermentati, Candida guilliermondii, Candida haemulonii, Candida insectamens, Candida insectorum, Candida intermedia, Candida jeffresii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida lyxosophila, Candida maltosa, Candida membranifaciens, Candida milleri, Candida oleophila, Candida oregonensis, Candida parapsilosis, Candida quercitrusa, Candida sake, Candida shehatea, Candida temnochilae, Candida tenuis, Candida tropicalis, Candida tsuchiyae, Candida sinolaborantium, Candida sojae, Candida viswanathii, Candida utilis.

Further research reveals another 29 species of Candida:

Candida abiesophila, Candida amphixiae, Candida blattariae, Candida bracarensis, Candida buinensis, Candida cerambycidaru, Candida endomychidarum, Candida floridaensis, Candida friedrichii, Candida ghanaensis, Candida gorgasii, Candida grinbergsii, Candida lessepsii, Candida lignicola, Candida lignohabitans, Candida marionensis, Candida marylandica, Candida membranifaciens, Candida michaelii, Candida newmexicoensis, Candida nivariensis, Candida northcarolinaensis, Candida ontarioensis, Candida peoriaensis, Candida pinicola, Candida ponderosae, Candida sinolaborantium, Candida temnochilae, Candida Thailandia.

 

It is likely that there are hundreds of candida species, and tens of thousands of strains. We are only just beginning to understand the world that exists within us.