The Candida Expert

Posts tagged ‘Antibiotics’

Can Candida ever be cured?

Q. Is it true that Candida can never be ‘cured’, only controlled?

A. We have had great success with the Candida Plan over the past 19 years with correcting the imbalances of fungal Candida. There are situations that can create a re-occurrence of fungal Candida. These include:

  • the use of antibiotics
  • eating antibiotic-laden foods
  • chemotherapy
  • long-term use of steroids and hormone replacement medicines
  • diabetes
  • surgeries
  • immunosuppression
  • malnutrition

See Also:

What are some of the signs and symptoms that I might be experiencing Candida?

How often should I repeat the Candida Plan?

After The Plan: The Maintenance Program & Tune-Up Program

The True Test for Candida

Here is some important information about Candida testing, taken from my Frequently Asked Questions.

Q. Are there tests I can take to see if I have a Candida problem?

A. Testing for Candida albicans antibodies has drawbacks, as the sensitivity, or accuracy, of tests varies from person to person and test to test. False positives may result from various influences, past or present. If blood tests are done prior to the immune system developing a response to Candida infections, then there may be a false-negative test result. If the immune system is suppressed or fatigued from a longstanding infection, then a false-negative test result may also be present. If the immune system has been sensitized, but the infection is no longer present, it may produce a false-positive. While all tests can be useful, it is hard to determine the accuracy from any one test.

Candida DNA by PCR (polymerase chain reaction) testing has gained favor due to its rapid, sensitive, and specific results. Its high sensitivity may likewise produce false-positives due to detection of Candida cultures normally present, or due to the lingering presence of dead Candida cells.

An antibody test in conjunction with a stool test, or other tissue cultures, and a history of past antibiotic use will most likely demonstrate Candida. Combining history, lab tests, and symptoms along with a trial of a Candida protocol and observing results can provide the greatest accuracy.

Recommended Candida Tests:

  • GI Effects Complete Stool Profile – Stool PCR testing by Metametrix Labs uses DNA analysis to identify microbiota including anaerobes, a previously immeasurable area of the gut environment.
  • Urinary D-arabinitol/L-arabinitol ratio – Microbial Organic Acids Test + Yeast Culture w/ Sensitivity Test Combo by Great Plains Labs. The detection of an elevated level of D-arabinitol by gas chromatography and mass spectrometry (GC-MS). D-arabinitol is a specific test for this common metabolite of candida, but the current complexity of GC-MS may discourage use of this test by some labs. D-arabinitol testing of serum, saliva, vaginal fluid, and urine samples by itself is available through various labs. Kidney dysfunction can cause an increase in arabinitol concentrations.
  • Candida Immune Complex – By Genova Diagnostics. This test evaluates blood for the immune response to Candida albicans.

Click here for a list of other known tests for Candida.

After years of analyzing the research on Candida albicans, gastroenterology, immunology, microbiology, biology, mycology, and several other related fields, I view the true test of whether or not someone has Candida as simple as this:

If you have ever taken an antibiotic at any time in your life, then you have systemic fungal Candida.

Why follow a special diet for Candida?

Here’s one of my most frequently asked questions about the dietary component of my Candida Plan. If you’re considering ThreeLac or other supplements that do not have a dietary component, read on…

Q. I’ve read about plans that use Threelac and don’t require any dietary changes. Why does your plan include a food plan?

A. Dr. McCombs’ Candida Plan has been designed to revert the problematic fungal form of Candida back to its normal, healthy yeast form, detoxify the body burden, boost the appropriate immune response at the appropriate time, and help to restore normal tissue flora. Each step of Dr. McCombs’ Candida Plan is designed to support and work within the natural guidelines of a healthy ecosystem. It does not attempt to kill off or destroy anything within that system, as doing so can cause more long-term health issues and create antifungal resistance. The food guidelines with the Plan eliminates foods that can be a quick fuel source for fungal Candida or can cause allergic responses that facilitate the spread of Candida in the body.

Some companies like those that market Threelac wish to appeal to people who don’t want to invest in the time and dietary changes necessary to support successful correction of fungal Candida imbalances and establishment of health in the body. While a quick fix is appealing, it isn’t realistic. Our research has found that both feeding Candida and killing it doesn’t get anyone anywhere. It can, however, double the toxic load in the body.

It is also important to be aware of products on the market, like Threelac, that contain Bacillus subtilis. Bacillus subtilis (B subtilis) has the ability to destroy bacteria and fungus alike without any consideration for the overall health of the body. B. subtilis has been found to be highly antibacterial and is the basis for several strong antibiotics (Bacitracin, Subtilin, Neosidin, Colistin, etc). Possible side effects associated with these antibiotics include kidney failure, heart attack, anxiety, anaphylactic reactions, blurred vision, antibiotic and antifungal resistant strains, hives, rash, etc. Destroying other bacterial species in the digestive tract can create the same imbalances that create systemic fungal and bacterial infections. The overall effect of B. subtilis can create many unidentified conditions. Research is now implicating antibiotics in conditions such as life-threatening colitis, diabetes, obesity, and cancer.

The problem with many products and approaches on the market today is that they follow the old outdated medical model in trying to destroy bacteria, fungus, etc., in the body without any knowledge or concern for the natural ecosystem of the digestive tract and the vitally important role of microorganisms in our body. Man is now considered to be a super-organism dependent on the health of the bacteria and other organisms of the digestive tract and tissues. These same microorganisms outnumber human cells in the body by 10 to 1. The goal of any approach should be to re-establish balance and support normal function of microorganisms and human cells alike.

We strongly recommend against the use of products on the market that contain Bacillus subtilis.

For more information on Dr. McCombs’ Candida Plan and the dietary guidelines, visit: http://www.mccombsplan.com/new/the_plan/yesnofoods.php

To learn more about how fungal Candida albicans affects the body, visit: http://candidalibrary.org

75+ Candida Studies: The Candida Fact Sheet

Introduction

Many of the doctors who have consulted with me have asked for more information and references to better educate themselves, their patients and fellow doctors. To assist them, I gathered together a few of the references that we are including in our online Candida Library. In this article, you’ll find over 75 research references that provide information on how Candida goes from a harmless normal constituent of the gastrointestinal tract to a pathogenic systemic problem that can affect anyone and everyone.  I’m providing this information here for you to become better educated about Candida, like the many doctors with whom I’ve consulted. Pass it along to your family, friends, and doctors, if you feel that it can also assist them in learning and understanding more about a problem that affects virtually everyone. Please click here to download this Candida Fact Sheet as a PDF so you can email or print it out.

Candida Facts

The human digestive tract is said to contain some 100 trillion cells compared to about only 10 trillion human cells in the body. This particular arrangement has led to man being classified as a “super-organism,” whose health is directly related to the function of the thousands of species of micro-organisms that make up the 100 trillion cells in the intestinal tract. For years, research suggested that there were 400-500 species that made up this microbial population. Recent advances in research have now put that number at anywhere from 3,300 to 5,700 or more, (9) to upwards of 30,000 species. The intestinal tract houses what has been called “the densest ecosystem on the planet,” and is approximately 25-28 ft long. The surface area of the intestinal tract measures approximately 200 square meters, roughly the size of a tennis court.

Modern medicine states that systemic Candida exists only in immunocompromised individuals, as a result of AIDS, immunosuppressive therapy, such as in organ transplants, or chemotherapy. Science states otherwise, and extends that list to include: diabetes, premature infants, surgical patients; (7)(10)(66) hematological malignancies; (8) hospitalized patients, especially in Intensive Care Units, or having major injuries;(10) burn victims; (54) nutritional deficiencies; (22) as well as aging. (22)(35)(36)(37) alcoholism, cirrhosis, tuberculosis, cancer, corticosteroids, marrow hyperplasia;

Researchers continuously broaden the scope of those being affected. Valdimarsson et al. state that there are no common immunological denominators. (1) may appear following even a slight modification of the host. (55) Berg et al. on behalf of Biocodex Pharmaceuticals states that Candida spreads in immunocompetent individuals. (68) Senet states that the pathogenic behavior of Candida

The widespread use of antibiotics, which induce neutropenia, an abnormally low number of neutrophils (white blood cells), and immune system suppression is commonly attributed by science to be the most consistent cause of systemic Candida.(3)(9)(12)(13)(14)(16)(17)(18)(19)(20)(21)(22)(55)(56)(57)(64)(67)(68)(69)(76)(77) Corticosteroids suppress immune system function. (11)(17)(68) Intestinal homeostasis is critical for human health. (6)(7)(55)(57)(68)(71)

Candida has been shown to be capable of causing systemic immuno-suppression via its cell wall proteins, (2) TLR2-mediated IL-10 release, (30) protease cleaving of leukocyte integrin CD11/CD18, (25)(31)(34)(62)(63) and intracellular components. (72)

Candida can manipulate inflammatory responses as needed (31)(32) and inflammatory responses can have systemic effects. (44)(45)(46)(47)

Candida has the ability to destroy immune cells, (3)(23)(24)(26)(49) hide from the immune system, (4)(19) adapt to the inner environment of immune cells, (5)(38)(39) resist and suppress ROI and NO production of immune cells, (15)(16)(27)(43) destroy binding sites and receptors of immune cells, (25)(31)(33)(34) manipulate immune responses, (28)(53)(70)(74) and affect immune cell structure. (42)(73)

Stress can cause accumulation of iron at the luminal surface of intestinal cells (75) and iron overload leads to impaired neutrophil function. (14) Stress can lead to immunosuppression facilitating the spread of Candida. (55) Sanchez et al. discuss the affect of starches vs. sugars on the immune system response to Candida. (29)

Macrophages, which are widely distributed immune system cells that play an indispensable role in homeostasis and defense, and are cells that function as a first line of defense against invading microorganisms, are historically ineffective against Candida albicans. (40)(41)

While evidence suggests that intestinal Dendritic Cells are critical for regulation of immunity in the gut, (50) Dendritic Cells are poor in both intracellular killing and damaging of C. albicans hyphae, (48) and only kill as effectively as macrophages. (51) Ingestion of hyphae by Dendritic Cells inhibits Th1 immune responses. (52)

Candida Albicans’ Secreted Aspartyl Proteases (SAPs) are a highly specific family of enzymes that assists in its ability to cause disease in the body. SAPs are believed to play a role in Candida’s ability to induce inflammation, invade and breakdown tissue barriers, digest proteins for nutrients, destroy and evade immune defenses, and spread throughout the body. (25)(33)(34)(58)(59)(60)(61)(62)(63)(65) Research has shown that the destructive effects of protease enzymes are associated with diabetes, hypertension, and immune system suppression. (25)(31)(34)(62)

Additional enzymes secreted by Candida albicans include phospholipases, lipases, glucoamylases, phosphatases, and β-N-acetylglucosaminidase.

Conclusion

As impressive as I find the above research to be, it is just a small representation of the research on Candida albicans and its effects in humans. With over 26,000 studies on Candida albicans since the introduction of antibiotics in the late 1940s, there is much more to be analyzed and reported. What is readily apparent from this data is the fact that systemic fungal Candida infections are a common occurrence in most individuals as a result of antibiotic use and other contributing factors.

– Dr. Jeffrey McCombs, DC

References

1. Immunological phenomena associated with chronic mucocutaneous candidiasis have recently been intensively studied by many workers (reviewed by Kirkpatrick, Rich & Bennett, 1971). The results have shown that there is no common immunological denominator in this disease. The most common finding, however, is defective cellular immunity, which may or may not be accompanied by failure of in vitro lymphocyte transformation.

Immunological Feautures in a Case of Chronic Granulomatous Candidiasis and its Treatment with Transfer Factor

H. VALDIMARSSON, C. B. S. WOOD, J. R. HOBBS AND P. J. L. HOLT

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1553624/pdf/clinexpimmunol00295-0003.pdf

2. The ability of Candida albicans to establish an infection involves multiple components of this fungal pathogen, but its ability to persist in host tissue may involve primarily the immunosuppressive property of a major cell wall glycoprotein, mannan. Mannan and oligosaccharide fragments of mannan are potent inhibitors of cell-mediated immunity and appear to reproduce the immune deficit of patients with the mucocutaneous form of candidiasis. However, neither the exact structures of these inhibitory species nor their mechanisms of action have yet been clearly defined. Different investigators have proposed that mannan or mannan catabolites act upon monocytes or suppressor T lymphocytes, but research from unrelated areas has provided still other possibilities for consideration. These include interference with cytokine activities, lymphocyte-monocyte interactions, and leukocyte homing. To stimulate further research of the immunosuppressive property of C. albicans mannan, we have reviewed (i) the relationship of mannan to other antigens and virulence factors of the fungus; (ii) the chemistry of mannan, together with methods for preparation of mannan and mannan fragments; and (iii) the historical evidence for immunosuppression by Candida mannan and the mechanisms currently proposed for this property; and (iv) we have speculated upon still other mechanisms by which mannan might influence host defense functions. It is possible that understanding the immunosuppressive effects of mannan will provide clues to novel therapies for candidiasis that will enhance the efficacy of both available and future anti-Candida agents. Immunosuppressive properties observed for isolated Candida mannan and its catabolites in vivo and in vitro provide additional evidence that fungal mannan is responsible for patient immune dysfunction.

Candida mannan: chemistry, suppression of cell-mediated immunity, and possible mechanisms of action.

R D Nelson, N Shibata, R P Podzorski, and M J Herron

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC358175/

 

Continue reading References below…

(more…)

Candida and Inflammation in the Athlete

There’s a certain sense of loss in realizing that the best of each us is being eroded away, or lies wasting away, as hidden potential within the cells of our bodies. The gradual erosion of potential is often found in cases where there is an underlying imbalance in the body that creates chronic inflammation and the inability to absorb nutrients for normal function and repair. When chronic inflammation and nutritional imbalances are combined, degeneration of tissues advances at a far faster rate than it normally would. I have found this to repeatedly be the case in people who have been exposed to antibiotics and as a result suffer from the system-wide imbalances that are created from their usage.

In many people, this may look like a normal aging process. In the athlete, it usually is associated with excessive wear and tear on joints and failure of the muscles and the body to respond and perform as they once did. Athletic careers and pursuits can end prematurely, and the hopes and dreams of what could have been, remain forever as hopes and dreams.

Under these types of constant inflammatory conditions, the serious athlete or weekend warrior who pushes the limits of his body’s ability in pursuit of personal records and goals, will end up driving the inflammatory machinery that will eventually rob them of their potential for excellence. Exercise produces pro-inflammatory immune system responses and oxidative stress that play a role in repair and remodeling of muscle tissues. Intense exercise carries this response further, and over the long-run can produce immune system suppression and autoimmune-type responses. The following excerpt from Journal of the International Society of Sports Nutrition helps to explain a little more on this topic:

“DOMS (Delayed Onset Muscle Soreness) typically occurs after unaccustomed or high-intensity exercise, most commonly anaerobic. Soreness is usually noted at 24 hours post-exercise and can last as long as 5 to 7 days post-exercise. Although several models of DOMS have been suggested, researchers generally agree that muscle damage initiates a cascade of events leading to DOMS. The muscle damage and oxidative stress response following anaerobic exercise have been deemed necessary to promote skeletal muscle remodeling to gain benefit from the exercise, but enhanced recovery may be advantageous for more rapidly promoting an anabolic environment.

Exercise elicits mechanical and hormonal reactions from the body. The resulting muscle damage from these reactions elicits inflammatory and oxidative responses that may exacerbate muscle injury and prolong the time to regeneration. The hormonal contributor to muscle damage during exercise is derived through basic neuroendocrine responses to exercise demands. High intensity exercise triggers the activation of the hypothalamic-pituitary-adrenal (HPA) axis leading to the release of cortisol and other catabolic hormones. These hormones function to meet increased energy needs by recruiting substrates for gluconeogenesis via the breakdown of lipids and proteins. Through their catabolic nature, these hormones also indirectly lead to muscle cell damage.

Inflammation following anaerobic exercise functions to clear debris in preparation for muscle regeneration. The magnitude of the increase in inflammatory cytokines (such as IL-6) varies proportionately to the intensity and duration of the exercise. However, a prolonged inflammatory response can increase muscle damage and delay recovery by exacerbating oxidative stress and increasing production of reactive oxygen species (ROS). The increased ROS production seen with high intensity training can lead to oxidative stress such as lipid peroxidation (1).”

While intense exercise is usually associated with greater degrees of DOMS, inflammation, immune system suppression, and oxidative stress, mild-to-moderate exercise is typically associated with boosting the immune system and supporting greater health in the body. If however, there is an underlying state of chronic inflammation due to an infectious agent, then even mild-to-moderate exercise may result in many of the symptoms commonly found with intense exercise, as fuel is added to an already burning fire. Over a period of months and years, this can lead to shortened productivity and limited excellence in today’s athletes. In one sense, it is the equivalent of driving with the brakes on.

The most frequent infectious agent that fits this model is Candida albicans. C. albicans commonly exists as a yeast organism in the human body and is considered a normal part of healthy tissue flora. Due primarily to the effect of antibiotics, this yeast organism transforms into a pathogenic, problematic fungal form that has been associated with a multitude of conditions and diseases in the body.

Since the introduction of antibiotics in the late 1940s following WWII, there has been a remarkable increase in the research of candida-related conditions and diseases (2) with over 24,000 research articles being published since 1949. On average, that is enough for one research article per day in the last 51 years, with enough left over to fill another 6 years of daily research publications. With a one-to-one association between antibiotic use and the development of systemic fungal infections, implications exist for society as whole being afflicted with a post-antibiotic syndrome of fungal candida and immune system dysregulation.

In systemic fungal candida infections, ongoing pro-inflammatory reactions from both systemic and localized immune system responses combine with the virulence mechanisms of fungal candida to create a constant state of oxidative stress, pro-inflammatory hormonal imbalances, chronic tissue inflammation, and tissue degeneration. This type of smoldering, nonresolving inflammation becomes a constant component of the microenvironment within and is implicated in many diseases and conditions.

Joint restriction, pain, swelling and inflammation, weight gain, fatigue, blood sugar imbalances, nutrient deficiencies, slower post-exercise recovery periods and other symptoms are commonly associated with this underlying condition in today’s athletes and others.

In response to patients who had these problems, I developed a well laid out plan to counteract this post-antibiotic syndrome and subsequent systemic imbalances. Athletes who have followed the McCombs Plan have seen a decrease in the degree and amount of inflammation experienced during exercise, as well as pre- and post-exercise inflammatory responses with faster recovery times. Many of the conditions associated with fungal candida that impact human performance have been diminished and resolved. Marathon runners and Tri-atheletes found themselves competing without “hitting the wall.” Wrestlers, weight lifters and others found that their joint pains and restrictions decreased and disappeared. Increased energy and vitality that is sustained throughout the day has been a common response.

If we are to achieve the best that we can be, we must rid ourselves of these types of physiological limitations, or settle for less and be happy with what could have been.

1. The effects of theaflavin-enriched black tea extract on muscle soreness, oxidative stress, inflammation, and endocrine responses to acute anaerobic interval training: a randomized, double-blind, crossover study

Shawn M Arent, Meghan Senso, Devon L Golem and Kenneth H McKeever

Journal of the International Society of Sports Nutrition 2010, 7:11doi:10.1186/1550-2783-7-11

http://www.jissn.com/content/7/1/11

2. SciTrends of Biomedical Sciences

http://rzhetskylab.cu-genome.org/cgi-bin/trendshow?MeSHID=1191

10 Candida Myths

NASA does research on candida because astronauts come down with it while in space. Are astronauts immunosuppressed people by the medical definition? Absolutely not!

Myth #1 – Only women get candida infections

Candida Albicans is commonly considered to be a yeast infection that only women get. It is in fact a fungal infection caused by antibiotic use that affects both men and women. Research states that over 90% of the population might have systemic candida.

Myth #2 – Candida is a yeast infection

Candida Albicans in its normal yeast form is a commensal organism that has co-evolved with over 5,600 other micro-organisms taking up residence in the intestinal tract and other tissues.

Only in its fungal (hyphal/mycelial) form is it an infectious agent that uses its cell wall, adhesion, phenotypic switching, and enzymes to spread and destroy tissues throughout the body. Many people commonly refer to Candida Albicans as a yeast infection when it is actually a fungal infection.

Myth #3 – Candida needs sugars to become pathogenic and spread

The primary drive all living organisms is survial. If you remove food sources from the yeast form of Candida, it will convert to its fungal form and search for food in the body. If someone took all of the food out of your house, you’d go shopping too.

Sugars will fuel Candida very effectively, but it’s not an absolute that by excluding sugars and simple carbs from your diet, you’ll starve it to death. People who don’t spend the time researching Candida put out this information to the detriment of others. You’ll need to use non-toxic approaches that revert it back to its yeast form and then remove the excess yeast by empowering the immune system.

Myth #4 – Only immunosuppressed people get candida infections

The medical viewpoint is that only immunosuppressed people (AIDS, Immunosuppressive therapy, chemotherapy) get systemic candida. They state this as though that is the official position. Official position or not, for whatever reason, it is false, misleading, and demonstrates a complete lack of knowledge about candida, microbiology, and physiology. Additionally, it is exactly the opposite of what all the research has continually demonstrated since the 1940s when antibiotics were first introduced.

NASA does research on candida because astronauts come down with it while in space. Are astronauts immunosuppressed people by the medical definition? Absolutely not!

Research has repeatedly shown that the immune system does not need to be suppressed in order for candida to convert to its fungal form and invade the body. On the other hand, a depressed immune system or slightly suppressed immune system will contribute to the spread of fungal candida. What can depress or suppress the immune system? Worries, stress, food coloring, sugar, and among many other things, candida itself. As was correctly pointed out above, slight neutropenia would contribute to the spread of candida. So although a weakened immune system does help, it is not needed, but almost always present to some degree or another.

Myth #5 – Pathogenic Candida requires an acid pH environment to grow

This is another common myth put out by people who think everything is supposed to be alkaline in the body. The digestive tract is supposed to be acid and doesn’t even approach alkalinity until the rectum. The vaginal tissue is also supposed to be acidic.

The lactic acid bacteria produce lactic acid to help maintain an acid pH. The stomach is very acidic, and the acidity of juices leaving the stomach helps to stimulate pancreatic function, as well as maintain the proper acid pH of the intestinal tract. Bile acids also contribute to maintaining the acid pH. In an acid environment, candida exists in its yeast form, but once that starts to shift to a more alakline environment, the alkaline pH stimulates the conversion to the pathogenic, fungal form. The same is true for E. Coli. In an acid environment, it plays a role in the production of vitamin K for the body. In an alkaline environment it becomes the pathogenic form that causes so many problems for people. Fungal Candida does extremely well in an akaline environment such as the blood stream.

Myth #6 – Mercury feeds Candida

I’m not sure where this information came from, as I have yet to find any studies that mention this. This mainly seems to be put out by people who think that mercury determines everything in the body. The only possible explanation that I can come up with is that mercury would have a suppressive effect on the immune system, which would possibly allow fungal candida to spread unimpeded. I have yet to find anyone who had this problem. The amount of mercury needed to have a suppressive effect systemically within the body would be greater than most people deal with. Either way, I have never seen any research that states that mercury feeds candida.

People who usually support the idea that mercury feeds candida claim that some doctors have pointed out that most people who have candida infections also have mercury toxicity. If that were true just by association, then it would also apply for parasites, and other heavy metals and chemicals. The average American has a large load of chemicals in the tissues. This doesn’t mean that these chemicals also feed candida. It’s an erroneous assumption to make just because 2 or more issues exist in the body at the same time.

A deficiency of iron would slow down the spread of fungal candida, as it would many other micro-organisms. Dr. Sharon Moalem’s book, “Survival of the Sickest” points out how some people survived the plague simply by being anemic and not having enough iron stores in their bodies to allow the bacteria to thrive. Fungal Candida however, will steal iron from red blood cells in order to survive. This is another one of its many suvival and virulence mechanisms.

Myth #7 – Oxygen kills Candida

Another erroneous myth. Candida Albicans is facultative anaerobe, which means it can exist in oxygen-rich (mouth, skin) and oxygen-depleted (intestinal tract, body tissues) environments. Some studies indicate that is harder to eliminate in an oxygen-rich environment. That seems to be more true of thrush, but not as true for skin infections.

Candida has the ability to evade reactive oxygen species that are produced by macrophages to destroy foreign substances in the body.

Myth #8 – Only drugs can eliminate candida

Most people will be familiar with this myth. If anything drugs increase the resistance of candida. Candida is very adaptive to drugs that try to kill it off. Most research being done today is to find new drugs for fighting candida, because candida has developed resistance to all other antifungals. Antifungal drugs come with many side effects, which include destruction of liver tissue.

The better choice is to use natural antifungals that aren’t toxic to the body. Most every plant on the earth has developed some form of antifungal mechanism in order to avoid being destroyed by some 1.5-2.5 million fungus that inhabit the Earth. There is plenty of research that shows the antifungal quality of many natural substances found in nature.

Myth #9 – Use of antifungals needs to be rotated to eliminate Candida

I usually see this claim on holistic websites and not in the research. Fungal candida can and has developed resistance and immunity to anti-fungal drugs. I find claims about needing to rotate antifungals on sites where the approach they are using, or the substances that they choose to use, or some combination of the two, aren’t effective for eliminating systemic candida. They claim that candida is adapting to whatever their using, so you need to rotate antifungals. I find that they’re just not using an effective product or approach, and they subsequently rationalize its ineffectiveness as the candida adapting.

I’ve never found this to be the case with the McCombs Plan where we use a simple fatty acid to revert candida back into its normal yeast state.

Most natural products are fungistatic (inhibit) and not fungicidal (kill). Its better to be fungistatic, as fungicidal products (drugs) create resistant strains of candida. Nature is filled with thousands of antifungal products that plants make and each one is effective as a fungistatic agent.

Myth #10 – Medical Doctors are familiar with Candida infections

Most MDs won’t even be familiar with anything about Candida Albicans and will dismiss it rather than take the time to find out more about it. There is a large body of research on Candida Albicans that has been around since the introduction of antibiotics in the late 1940s. Research in the late 1940s, 50s, and 60s was driven by the fact that so many people developed systemic candida infections just by the use of a new drug, penicillin.

Some MDs will state that it’s only a concern in Immunosuppressed patients (AIDS, HIV) and patients receiving chemotherapy or immunosuppressive medications. It’s not. Research from the 1990s shows that even the slightest modification of the intestinal flora can create systemic candida infections. More recent research shows that antibiotics will cause candida and that these changes can lead to acute problems ranging from diarrhea to life-threatening colitis to chronic changes such as obesity, cancers, and many other diseases. Other research shows that the protease enzymes that candida uses can be responsible for diabetes, hypertension, and immune system suppression.

For better health, go to Dr. McCombs Candida Plan.

Is Candida Making Your Life Miserable?

Reposted from www.AskTheHealthLady.com

Have you been searching for answers to health issues that seem to evade all treatments? Does your doctor dismiss your concerns and questions, or tell you that you’re just aging? Do you feel as though nobody has a clue as to what’s happening to your health and your body?

Chances are that you’re dealing with the effects of a fungus called Candida Albicans. Candida Albicans is the most frequent opportunistic and costly fungal infection in man.

Candida Albicans is a dimorphic organism, meaning that it can exist in 2 different forms, as a yeast or as a fungus. In its yeast form, Candida Albicans is a beneficial member of the normal flora of the human digestive tract and other tissues, but in its fungal form, it is capable of causing acute and chronic problems ranging from diarrhea and life-threatening colitis to obesity, cancer, and other illnesses and diseases. Research shows a link between diabetes, hypertension, and immune system suppression and the mechanisms that Candida uses to spread throughout the body.

Some of the other conditions commonly associated with Candida include allergies, skin conditions, hormonal imbalances, digestive disorders, sugar cravings, gas and bloating, acid reflux, headaches, arthritis, depression, irritability, exhaustion, brain fog, anxiety, and sinus infections.

Antibiotics are the primary cause of fungal Candida. They can change the health of your body permanently. Antibiotics take a normal physiological response to an imbalance in the body and turn it into a pathogenic, disease producing process. Antibiotics destroy the natural bacterial flora that helps to keep candida in check. Eliminating large bacterial colonies eliminates the competition and enables the candida to have a bigger share of the pie.

One study showed that 98% of the Candida yeast had converted to its fungal form within 24 hours of being exposed to antibiotics. Another study showed that from 4-72 hours later, it was destroying tissues within the liver and pancreas.

As bacteria are destroyed by antibiotics, they break down and release substances from within their cells that promote inflammation and tissue break down. One of these inflammatory substances, peptidoglycan (PGN) has been found to directly stimulate candida to change from its yeast to fungal form.

Antibiotics also suppress immune system responses and function, which enable the fungal candida to evade immune cells and grow unchecked throughout the body.

When antibiotics indiscriminately destroy the good and bad bacteria of the intestinal tract, they affect the normal pH of the gut. The bacteria help to keep the pH of the intestinal tract in an acidic range through secretions of acids and enzymes. Without these acids, the pH becomes more alkaline. This creates an environment that stimulates and promotes active fungal growth. Candida continually demonstrates an amazing ability to adapt to changes in its environment at lightening-like speeds.

Research shows that a deficiency of nutrients can also stimulate the yeast-to-fungal change, as the candida will go in search of nutrients elsewhere in the body’s tissues, much as you or I would go shopping if there were no food in the house. The fact that candida grows on the nutrient barren plains of our body’s skin surface is a good example of how well it can survive under different conditions.

To restore health and vitality in the body, the candida needs to be reduced to its yeast form once again. Additionally, the body needs to detoxified, the immune system boosted, and the beneficial bacterial flora needs to be re-implanted into the body’s tissues. The intestinal tract is considered to be the densest ecosystem of bacteria on the planet.

There are an estimated 100 trillion cells that reside within it. Restoring and maintaining the balance of this system will have a tremendous impact on our health and how we age. We now have enough information to enable us to activate the life force within us and make the right choices for leading a healthy vibrant life.

Dr. Jeffrey S. McCombs, DC, is a 3rd generation Doctor of Chiropractic, author of the book: LifeForce, and developer of the McCombs Plan for Health, Vitality, and Transformation . His 25 years of ongoing research and practice emphasizes addressing the nutritional, environmental, emotional, structural, and biochemical aspects of acute and chronic health conditions in his patients.

Dr. McCombs will be answering your questions about Candida on a free one-hour teleseminar Thursday October 22, 2009. Sign up and submit your question at: www.AskTheHealthLady.com. The call with be archived so you may replay it later.

Antibiotics and Candida

I often get asked about antibiotics and systemic candida. Antibiotics are definitely the best way to create systemic fungal infections and lifelong intestinal flora imbalances in the body, as well as an unlimited number of other problems. Although the medical profession doesn’t even acknowledge this, scientists and researchers state this obvious fact over and over again.

 

Antibiotics kill good and bad bacteria. Killing these bacteria causes a massive hemorrhaging of the internal components of all bacteria. This is particularly problematic because our bodies respond to these internal components by producing acute and eventually chronic long-term inflammation that can affect all tissues and cells throughout the body. This massive inflammatory cascade can breakdown tissues and interfere with cellular function. One of these internal substances, Lipopolysaccaharide (LPS) is common in gram-negative bacteria and is a substance that most researchers use in laboratory testing due to the overwhelming reliable strong immune response that it causes.

 

Some of these intracellular bacterial components, like Peptidoglycans (PGN) also act directly on the cellular membrane of the yeast Candida Albicans causing it to transform into its pathogenic fungal form. This is in addition to antibiotics eliminating millions of beneficial bacteria that help to keep the Candida Albicans yeast within ratios that benefit the overall health of the intestinal tract and therefore the rest of the body.

 

Antibiotics can also suppress the immune system response. This primarily affects the macrophages which go around cleaning up pathogenic organisms that would otherwise harm us. By suppressing macrophages, antibiotics can reduce the pro-inflammatory cascade which macrophages play a big role in initiating. While this may seem beneficial, it actually aids in the spread of the pathogenic fungal form of C. Albicans. First, with antibiotic-induced suppression of the immune system, the fungal candida now can spread more rapidly without macrophages to inhibit it. Secondly, by suppressing the macrophages and the inflammatory response, the liver does not release positive acute-phase proteins which are necessary for preventing the spread of pathogenic organisms throughout the body. Three of these acute-phase proteins (Ferritin, Ceruloplasmin, & Haptoglobin) function by binding iron and making it unavailable to pathogenic fungal candida. Without these 3 proteins, fungal candida can now attach itself to our blood cells and feed on an unlimited source of iron in the form of hemoglobin to help it spread throughout the body. This also goes for other pathogenic microbes that will be spreading as a result of the effect of antibiotics in the body. 

 

By killing off the beneficial bacteria that inhabit and help to regulate the normal healthy intestinal flora, we lose the beneficial enzymes and acids that these organisms produce. This causes the pH of the intestinal tract to become more alkaline. An alkaline intestinal pH also promotes the conversion of C. Albicans into its pathogenic fungal form. When the intestinal pH is acidic, candida remains in its normal yeast form. 

 

The above examples are just some of the ways that antibiotics promote and maintain the ongoing growth and spread of fungal candida throughout the body.

 

Killing off the beneficial bacteria also leads to decreased absorption of nutrients that our cells and tissues need to function in a healthy state. Certain strains of acidophilus help to synthesize B vitamins. A deficiency of these alone would create innumerable problems within the body.

 

There are an estimated 100 trillion micro-organisms within the intestinal tract. For many years, researchers were able to identify some 300-500 species of micro-organisms that were responsible for making up the 100 trillion cells. Recent advances in the use of technology have now identified close to 6,000 species in the large intestine alone. Most of what these organisms do and how they interact is unknown. As long as there is a sufficient amount of beneficial bacteria to keep everything in balance, then we have a better chance at staying healthy. Research now tells us that some these species are permanently eliminated from the body by the use of antibiotics – http://www.sciencedaily.com/releases/2008/11/081118121941.htm.

 

Apart from the use of antibiotics being responsible for thousands of deaths and over 144,000 visits to emergency rooms each year in the U.S. alone, the incidence of antibiotic resistance continues to escalate worldwide to the point that we are rapidly approaching a new era where antibiotics won’t be useful for most people – http://www.sciencedaily.com/releases/2009/01/090128183925.htm.

As this continues to happen, we will see an increase in the use of natural methods that help restore balance without creating additional problems. This is the goal of the McCombs Plan for Health, Vitality, and Transformation – http://mccombsplan.com/.

The Candida Challenge

Currently, there are over 100,000 species of known fungus on the planet and another 1.5-2.5 million that are expected to exist. Of these, the most well known fungus that exists on and within humans is the Candida Albicans species. Of this particular species there are over 1000 different strains that have been identified in various studies.

Candida Albicans, is normally a benign member of the normal flora of the human digestive tract, but it is capable of causing life-threatening illnesses in patients whose immune system is compromised. It is a dimorphic organism, meaning that it exists in 2 different forms, as a yeast or a fungus.

The yeast form is considered to be the benign or harmless state, while the fungal, mycelial form is the harmful, invasive state. Some research suggests that the yeast form may also be harmful under certain conditions, or at least play a greater role in the ability of the fungal form to invade the body and avoid immune system responses. The form that Candida will assume is dependent on various environmental factors – temperature, pH, nutrient availability, immune response, micro-organism competition, etc. It continually demonstrates an amazing ability to adapt to changes in its environment at lightening-like speeds.

Candida albicans is the most frequent opportunistic fungal infection in man. In hospital stays, it is the most commonly acquired (nosocomial) infection due to antibiotic use.

Antibiotics have a growth inducing effect on Candida Albicans. This can be accomplished in several ways. Antibiotics destroy the natural bacterial flora that helps to keep candida in check. Some resources state that the normal ratio of good bacteria to candida is a million to one. Eliminating large bacterial colonies eliminates the competition and enables the candida to have a bigger share of the pie, so to speak.

As bacteria are destroyed by antibiotics, they break down and release substances from within their cells that promote inflammation and tissue break down. One of these inflammatory substances, peptidoglycan (PGN) has been found to directly stimulate candida to change from its yeast to fungal form.

Antibiotics can also suppress immune system responses and function, which enable the fungal candida to evade immune cells and grow unchecked throughout the body.

When antibiotics indiscriminately destroy the good and bad bacteria of the intestinal tract, they affect the normal pH of these tissues. The bacteria help to keep the pH of the intestinal tract in an acidic range through secretions of acids and enzymes. Without these acids, the pH becomes more alkaline. This creates an environment that further stimulates and promotes active fungal growth.

As expressed earlier in this article, candida displays amazing adaptability to its environment. One common misconception is that candida grows only in a nutrient rich environment. Research shows that a deficiency of nutrients can also stimulate the yeast-to-fungal change, as the candida will go in search of nutrients elsewhere in the body’s tissues. The fact that candida grows on the nutrient barren plains of our body’s skin surface is a good example of how well it can survive under different conditions.

Once the fungal form of candida has been allowed to flourish, it can affect every organ, tissue, and cell of our bodies. Candida excretes a long list of toxins into the body. These toxins can produce many symptoms and lead to the overall deterioration of health that is a hallmark of candida infections. When our immune systems are depleted, stressed, or imbalanced in any way, this will allow the candida to become a systemic infection. This type of infection can last an entire lifetime, causing rapid aging and a host of illnesses.

To restore health and vitality in the body, the candida needs to be eliminated and reduced to its yeast form once again. Additionally, the body needs to detoxified of the accumulated wastes, and the beneficial bacterial flora needs to be re-implanted into the body’s tissues. The intestinal tract is considered to be the densest ecosystem of bacteria on the planet. There are an estimated 100 trillion cells that reside within it. Restoring and maintaining the balance of this system will have a tremendous impact on our health and how we age. We have enough information to enable us to activate the life force within us and make the right choices for leading a healthy vibrant life.

Dr. Jeffrey S. McCombs, DC, is a 3rd generation Doctor of Chiropractic, author of the book: LifeForce, and developer of the Life Force Plan. His 25 years of ongoing research and practice emphasizes addressing the nutritional, environmental, emotional, structural, and biochemical aspects of acute and chronic health conditions in his patients.

He can be contacted at www.mccombsplan.com, 888.236.7780.

 

 

A quick look at the genus Candida on Wikipedia lists 44 species of Candida: Candida albicans, Candida ascalaphidarum, Candida amphixiae, Candida antarctica, Candida atlantica, Candida atmosphaerica, Candida blattae, Candida carpophila, Candida cerambycidarum, Candida chauliodes, Candida corydali, Candida dosseyi, Candida dubliniensis, Candida ergatensis, Candida fructus, Candida glabrata, Candida fermentati, Candida guilliermondii, Candida haemulonii, Candida insectamens, Candida insectorum, Candida intermedia, Candida jeffresii, Candida kefyr, Candida krusei, Candida lusitaniae, Candida lyxosophila, Candida maltosa, Candida membranifaciens, Candida milleri, Candida oleophila, Candida oregonensis, Candida parapsilosis, Candida quercitrusa, Candida sake, Candida shehatea, Candida temnochilae, Candida tenuis, Candida tropicalis, Candida tsuchiyae, Candida sinolaborantium, Candida sojae, Candida viswanathii, Candida utilis.

Further research reveals another 29 species of Candida:

Candida abiesophila, Candida amphixiae, Candida blattariae, Candida bracarensis, Candida buinensis, Candida cerambycidaru, Candida endomychidarum, Candida floridaensis, Candida friedrichii, Candida ghanaensis, Candida gorgasii, Candida grinbergsii, Candida lessepsii, Candida lignicola, Candida lignohabitans, Candida marionensis, Candida marylandica, Candida membranifaciens, Candida michaelii, Candida newmexicoensis, Candida nivariensis, Candida northcarolinaensis, Candida ontarioensis, Candida peoriaensis, Candida pinicola, Candida ponderosae, Candida sinolaborantium, Candida temnochilae, Candida Thailandia.

 

It is likely that there are hundreds of candida species, and tens of thousands of strains. We are only just beginning to understand the world that exists within us.

God’s Hybrid

 

Somewhere along the primordial way, a bunch of micro-organisms became enclosed by, fewer in number, but larger “tissue” cells and the evolutionary race was on. This co-operative, bi-partisan effort allowed both types of cells to emerge from the primordial goo and the foundation for the human race was set. Through time, dinosaurs, and an ice age or two, this Human/Bacterial (HumBac) hybrid was able to go a lot farther than either party could have gone on their own.

 

Today’s hybrid, you and I, are now more bacterial than human. It’s estimated that there are approximately 10 trillion human cells wrapped around a digestive system containing 100 trillion cells composed of bacteria, virus, fungi, mold, parasites, and others who have come along for the ride. Of course the human cells have evolved to send emails, text, watch TV, and many other “human” things. The bacterial guys, well they’ve evolved into a cohesive force that involves themselves in the more mundane issues of life and death.

 

Dr. Bernard Jensen once said that, “Death begins in the colon.” If that’s true, then life begins in the small intestine, or maybe even the stomach. The foods that we eat bring with them the nutrients that we need to survive and function on a daily basis. They also bring with them, other organisms who ride along on their meal tickets trying to crash the party. It’s up to the 100 trillion cells living in our guts to weed out the bad guys, and process the nutrients for us to function normally.

 

The digestive tract is an intricate ballet of organisms, pH, enzymes, nutrients, peptides, and hormones in a dance with its human interface of cells, nerves, blood, lymph, and other fluids. Centuries of evolution have created a delicate synergism that we tend to take for granted. The Ecosystem of the digestive tract is a harmonious balance of craziness. Disturb this balance, and one fruitcake can terrorize the entire HumBac world, causing it to live in fear for its life.

 

A good example of how this happens is when we take antibiotics. “Anti” means against, and “biotic” means life. For those paying attention, this should be a big clue. Today’s powerful antibiotics have been likened to a terrorist opening fire in a crowded market. The good and the bad both perish. The killing is indiscriminate. In the intestinal world of bacteria et al, this creates chaos, and in the midst of the chaos, a lunatic can take control. The one “lunatic” that commonly follows this scenario is fungal candida. In its normal form in a balanced digestive system, it is a yeast that contributes to the overall health of the system. In its Dr. Jekyll-to-Mr. Hyde transformation, it becomes an invasive fungal organism which further destroys more bacteria and crosses over into the human cells creating havoc and chaos. This seems only fitting, in a way, since a fungal toxin was the first antibiotic and many antibiotics are potentized derivatives of fungal toxins.

 

Antibiotics have been justly credited for saving lives, but they have also needlessly taken lives. Many people die each year from reactions to antibiotics. Well over 140,000 people report to hospitals each year from adverse reactions to antibiotics. Some people experience permanent disability. Everyone who has taken antibiotics will have altered the delicate balance of the digestive tract and the role it plays in our health for years to come.

 

When antibiotics were first used, it was a common practice to be prescribed probiotics (“pro” meaning for) to be taken along with the antibiotics. This wise practice fell along the way for some reason. It needs to be reinstated. Probiotics can help to minimize some of the negative effects of antibiotics. Protecting our natural resources is something that is important to all of us.

 

A digestive tract that is in a state of imbalance can lead to: digestive diseases; inflammation throughout the body; depression; arthritis; hormonal imbalances; headaches; skin conditions; rapid aging; fatigue; brain fog; and a host of other problems that involves every human cell, tissue, and organ. For those who have taken antibiotics, this imbalance needs to be reversed.

 

We need to pay more attention to the 100 trillion fellow passengers that accompany us on our journey through life.  We need to be mindful of what goes into the body via liquids, foods, and the air we breathe. Our fellow passengers require nutrient-dense foods and periodic detoxification to assist them with the vital roles they play for us.

 

John Knowles, the former President of the Rockefeller put it well when he said, “The next major advance in the health of the American people will be determined by what the individual is willing to do for himself.”

 

So whether we’re God’s hybrid or Darwin’s HumBac, we need to exhibit a conscious mastery of managing this intricate interrelationship of life, or its back to the goo, or worse, to the doctor.

 

Dr. Jeffrey S. McCombs, DC, is a 3rd generation Doctor of Chiropractic, author of the book: LifeForce, and developer of the Life Force Plan. His 25 years of ongoing research and practice emphasizes addressing the nutritional, environmental, emotional, structural, and biochemical aspects of acute and chronic health conditions in his patients.

He can be reached at www.mccombsplan.com, 888.236.7780.